LINEAR NETWORK OPERATORS USING NODE-VARIANT GRAPH FILTERS

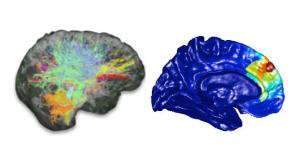
Santiago Segarra*, Antonio G. Marques[†], and Alejandro Ribeiro* E-mail: ssegarra@seas.upenn.edu

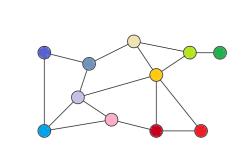
*Electrical & Systems Engineering, University of Pennsylvania †Signal Theory & Communications, King Juan Carlos University

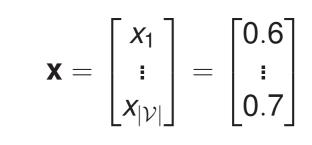
Graph signal processing - 101

Clean energy and grid analytics

- ► Desiderata: Process, analyze and learn from network data
- ▶ Network as graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- \blacktriangleright Interest here not in G itself, but in data associated with nodes in \mathcal{V} ⇒ The object of study is a graph signal
- Ex: Opinion profile, buffer congestion levels, neural activity, epidemic



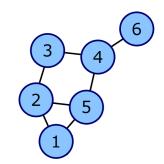




- ► Graph SP: extending classical SP results to graph signals
 - ⇒ Our view: GSP is well-suited to study network processes
- ► Filtering, smoothing, prediction, signal synthesis, compression

Graph signals and graph-shift operator

- ▶ Graph signals are mappings $x : \mathcal{V} \to \mathbb{R}$
 - \Rightarrow May be represented as a vector $\mathbf{x} \in \mathbb{R}^N$ (with $|\mathcal{V}| = N$)
 - \Rightarrow To understand and analyze **x**, useful to account for G's structure
- Graph G is endowed with a graph-shift operator S
- \Rightarrow Matrix $\mathbf{S} \in \mathbb{R}^{N \times N}$ satisfying: $\mathbf{S}_{ii} = \mathbf{0}$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$



$$\mathbf{S} = \begin{pmatrix} S_{11} & S_{12} & 0 & 0 & S_{15} & 0 \\ S_{21} & S_{22} & S_{23} & 0 & S_{25} & 0 \\ 0 & S_{23} & S_{33} & S_{34} & 0 & 0 \\ 0 & 0 & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & 0 & S_{54} & S_{55} & 0 \\ 0 & 0 & 0 & S_{64} & 0 & S_{66} \end{pmatrix}$$

S captures local structure in G

Ex: Adjacency A, Degree D and Laplacian L

Locality of S and frequency-domain representation

- ▶ S is a local linear operator \Rightarrow If $\mathbf{y} = \mathbf{S}\mathbf{x}$, $y_i = \sum_{i \in \mathcal{N}_i^+} S_{ij} x_j \Rightarrow$ 1-hop info
- Spectrum of S useful to analyze x
 - \Rightarrow Consider diagonalizable shifts $S = V \Lambda V^{-1}$
- ► Leverage S to define graph Fourier transform (GFT) and iGFT

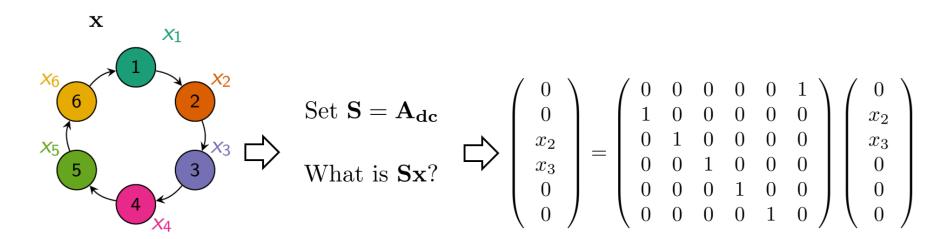
$$\tilde{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x},$$

 $\tilde{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x}, \qquad \mathbf{x} = \mathbf{V}\tilde{\mathbf{x}}$

► Key message: the two basic elements of GSP are **x** and **S**

Connection with discrete-time signal processing

▶ Q: Why is S called shift? A: Resemblance to time shifts



- ▶ When $\mathbf{S} = \mathbf{A}_{dc}$, we have that \mathbf{V}^{-1} is the DFT matrix
- ► Point of contact between GSP and DSP
- ► When particularizing GSP to the directed cycle ⇒ We recover known result from DSP

Linear (shift-invariant) graph filter

- ▶ A graph filter $H : \mathbb{R}^N \to \mathbb{R}^N$ is a map between graph signals
 - \Rightarrow Focus on linear filters $\Rightarrow N \times N$ matrix
- ► Filter **H** is a polynomial in **S** of degree L-1, with coeff. $\mathbf{h} = [h_0, \dots, h_{L-1}]^T$

$$\mathbf{H} := h_0 \mathbf{S}^0 + h_1 \mathbf{S}^1 + \ldots + h_{L-1} \mathbf{S}^{L-1} = \sum_{l=0}^{L-1} h_l \mathbf{S}^l$$

- ► Key properties: shift invariance and distributed implementation
- \Rightarrow Satisfies H(Sx) = S(Hx), only L-hop information to form y = Hx

Frequency response of a graph filter

- ► Using $\mathbf{S} = \mathbf{V} \wedge \mathbf{V}^{-1}$, filter is $\mathbf{H} = \sum_{l=0}^{L-1} h_l \mathbf{S}^l = \mathbf{V} \left(\sum_{l=0}^{L-1} h_l \wedge^l \right) \mathbf{V}^{-1}$
- ightharpoonup Since $ightharpoonup^{I}$ are diagonal, the GFT-iGFT can be used to write ightharpoonup as $\tilde{\mathbf{y}} = \operatorname{diag}(\tilde{\mathbf{h}})\tilde{\mathbf{x}}$
 - \Rightarrow Output at frequency k depends only on input at frequency k
- ► Frequency response of **H** is $\tilde{\mathbf{h}} = \mathbf{\Psi}\mathbf{h}$, where $\Psi_{ii} = \lambda_i^{j-1}$ (Vandermonde)
- Note that GFTs for signals ($\tilde{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x}$) and filters ($\tilde{\mathbf{h}} = \mathbf{\Psi}\mathbf{h}$) are different \Rightarrow If $S = A_{dc}$ (periodic signal), both Ψ and V^{-1} are equal to the DFT

Motivation and problem formulation

- ► Design graph filters to implement a given linear transformation
 - ⇒ Implementation is distributed by construction
 - ⇒ Conditions for perfect and approximate implementation
- ⇒ Leverage results from classical time-invariant systems

► Given a linear transformation B, find the filter coefficients h s. t.
$$\mathbf{B} = \sum_{h}^{L-1} h \mathbf{S}^{l}$$

- ► Graph-shift operator S is given
 - ⇒ Well-suited for cases where **S** is a network process
 - ⇒ E.g., diffusion in a social network
 - ⇒ Agents exchange information and weigh info observed
 - \Rightarrow Choosing **h** \Rightarrow fixing the weights

Conditions for perfect implementation

Notation: a) D # of distinct $\{\lambda_k\}_{k=1}^N$; b) $\{\gamma_k\}_{k=1}^N$ eigenvalues of B

Perfect implementation of linear graph operators

The linear transformation B can be implemented using a graph filter H if the three following conditions hold true:

- i) Matrices **B** and **S** are simultaneously diagonalizable. ii) For all (k_1,k_2) such that $\lambda_{k_1}=\lambda_{k_2}$, it holds that $\gamma_{k_1}=\gamma_{k_2}$. iii) The degree L-1 of **H** satisfies $L \geq D$.
- ▶ i) ⇒ frequency basis of B and S the same ⇒ necessary
- ightharpoonup ii) ightharpoonup two equal freqs. in **S** must be equal in **B** ightharpoonup necessary
- ► Restrictive conditions but not impossible \Rightarrow Consensus $\mathbf{B}_{con} = \mathbf{1}\mathbf{1}^T$ favors i) and ii) because it is rank-one

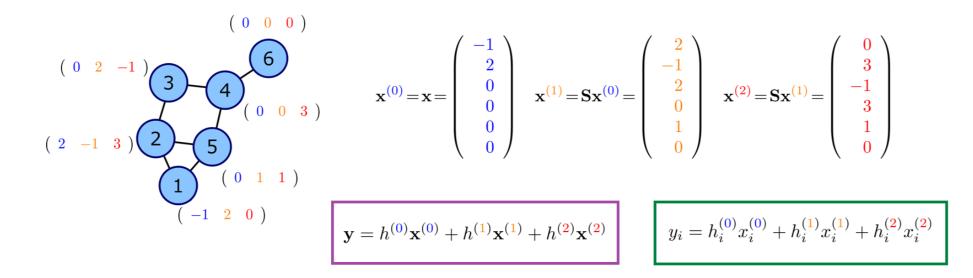


Node-variant graph filters: definition

► A generalization of graph filters:

$$\mathbf{H}_{\mathrm{nv}} := \sum_{l=0}^{L-1} \mathrm{diag}(\mathbf{h}^{(l)}) \mathbf{S}^{l}$$

 \Rightarrow When $\mathbf{h}^{(l)} = h_l \mathbf{1} \Rightarrow$ regular (node-invariant) filter



- ightharpoonup In general, when H_{nv} is applied to a signal x
 - \Rightarrow Each node applies different weights to the shifted signals $S^{\prime}x$
 - ⇒ More flexible and still distributed, not shift-invariant

Node-variant graph filters: frequency response

- ► Collect the coefficients of node *i* in \mathbf{h}_i , such that $[\mathbf{h}_i]_i = [\mathbf{h}^{(l)}]_i$
- ► Focus on the filter output at node i, $\mathbf{e}_i^T \mathbf{H}_{nv} \mathbf{x}$, and define $\mathbf{u}_i := \mathbf{V}^T \mathbf{e}_i$

$$\eta_i^T = \mathbf{e}_i^T \mathbf{H}_{\text{nv}} = \sum_{l=0}^{L-1} [\mathbf{h}_i]_l \mathbf{e}_i^T \mathbf{V} \mathbf{\Lambda}^l \mathbf{V}^{-1} = \mathbf{u}_i^T \text{diag}(\mathbf{\Psi} \mathbf{h}_i) \mathbf{V}^{-1}$$

- ► The output of the filter at node i, $\eta_i^T \mathbf{x}$ is the inner product of
- \Rightarrow V⁻¹x \Rightarrow the frequency representation of the input, and
- \Rightarrow **u**_i \Rightarrow how strongly the frequencies are expressed by node i
- \Rightarrow Modulated by $\Psi H_i \Rightarrow$ Frequency response associated to i

Perfect reconstruction with node-variant filters

► Node-variant filters can implement a larger class of transformations \Rightarrow Pick $\mathbf{h}^{(I)}$ for $I = 0, \dots, L-1$ so that

$$\mathbf{B} = \sum_{l=0}^{L-1} \operatorname{diag}(\mathbf{h}^{(l)})\mathbf{S}^{l}$$

ightharpoonup Defining $\mathbf{b}_i := \mathbf{B}^T \mathbf{e}_i$ and $\bar{\mathbf{b}}_i := \mathbf{V}^T \mathbf{b}_i$

Perfect implementation using node-variant filters

The linear transformation B can be implemented using the node-variant filter \mathbf{H}_{nv} if the three following conditions hold for all *i*: i) $[\mathbf{b}_i]_k = 0$ for those k such that $[\mathbf{u}_i]_k = 0$. ii) For all (k_1, k_2) s. t. $\lambda_{k_1} = \lambda_{k_2}$, it holds $[\bar{\mathbf{b}}_i]_{k_1}/[\mathbf{u}_i]_{k_1} = [\bar{\mathbf{b}}_i]_{k_2}/[\mathbf{u}_i]_{k_2}$. iii) The degree L-1 of \mathbf{H}_{nv} satisfies $L \geq D$.

- ► Less restrictive that for node-invariant filters
 - ⇒ Not surprising since we have additional freedom in the design
- ► Some shift operators S can implement any transformation B

Any linear transformation B can be implemented using a node-varying filter of degree N-1 if the graph-shift operator $S = V \Lambda V^{-1}$ satisfies: i) all the entries of **V** are non-zero.

- ii) all the eigenvalues $\{\lambda_k\}_{k=1}^N$ are distinct.
- ▶ Under these conditions, unique set of optimal coefficients $\{\mathbf{h}_i^*\}_{i=1}^N$

$$\mathbf{h}_i^* = \mathbf{\Psi}^{-1} \operatorname{diag}(\mathbf{u}_i)^{-1} \mathbf{V}^T \mathbf{b}_i$$

Approximate implementation: No prior knowledge

- ► When perfect reconstruction is infeasible
 - \Rightarrow Minimize a pre-specified error metric, design \mathbf{H}_{nv} to resemble \mathbf{B}
 - \Rightarrow We look at minimizing $\|\mathbf{H}_{nv} \mathbf{B}\|_{F}$ and $\|\mathbf{H}_{nv} \mathbf{B}\|_{2}$

ightharpoonup Collect the desired coefficient vectors in $\Gamma = [\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_N]$

▶ Define $\Phi_i := (\mathbf{V}^{-1})^T \operatorname{diag}(\mathbf{u}_i) \Psi$ and $\tilde{\mathbf{U}} := [\operatorname{diag}(\mathbf{u}_1), \dots, \operatorname{diag}(\mathbf{u}_N)]^T$

Approximate implementation with no knowledge of **x**

The optimal filter coefficients defined as $\{\mathbf{h}_{i,F}^*\}_{i=1}^N := \operatorname{argmin}_{\{\mathbf{h}_i\}_{i=1}^N} \|\mathbf{H}_{nv} - \mathbf{B}\|_F$ and $\{\mathbf{h}_{i,2}^*\}_{i=1}^N := \operatorname{argmin}_{\{\mathbf{h}_i\}_{i=1}^N} \|\mathbf{H}_{nv} - \mathbf{B}\|_2$ are, respectively, given by

$$\mathbf{h}_{i,\mathrm{F}}^* = \mathbf{\Phi}_i^\dagger \mathbf{b}_i \stackrel{\star}{=} (\mathbf{\Phi}_i^T \mathbf{\Phi}_i)^{-1} \mathbf{\Phi}_i^T \mathbf{b}_i,$$

for all i, where $\stackrel{\star}{=}$ holds if Φ_i has full column rank, and

- ightharpoonup For $\|\cdot\|_F$, optimal coefficients result from a least-squares problem
- ▶ There is no closed form for the $\|\cdot\|_2$ case
 - ⇒ Efficiently obtain it by solving a semi-definite program

Approximate implementation: Prior knowledge

- ► Incorporate prior knowledge of the input signal **x** into the design
- ► Goal is to minimize a metric of the error vector $\mathbf{d} := \mathbf{H}_{nv}\mathbf{x} \mathbf{B}\mathbf{x}$
- \triangleright When **x** is zero-mean with covariance $\mathbf{R}_{\mathbf{x}}$, the error covariance is $\mathbf{R}_{\mathsf{d}} := \mathbb{E}[\mathsf{dd}^{T}] = (\mathbf{H}_{\mathrm{nv}} - \mathbf{B})\mathbf{R}_{\mathsf{x}}(\mathbf{H}_{\mathrm{nv}} - \mathbf{B})^{T}$
- \triangleright Pick \mathbf{h}_i to minimize some metric of the error covariance \mathbf{R}_d \Rightarrow trace($\mathbf{R_d}$) \Rightarrow Mean squared error
 - $\Rightarrow \lambda_{\max}(\mathbf{R_d}) \Rightarrow \text{worst-case error}$

Approximate implementation with statistical knowledge of **x**

The optimal filter coefficients defined as $\{\mathbf{h}_{i,\mathrm{Tr}}^*\}_{i=1}^N$:=argmin $\{\mathbf{h}_i\}_{i=1}^N$:trace(\mathbf{R}_d) and $\{\mathbf{h}_{i,\lambda}^*\}_{i=1}^N := \operatorname{argmin}_{\{\mathbf{h}_i\}_{i=1}^N} \lambda_{\max}(\mathbf{R_d})$ are, respectively, given by

$$\mathbf{h}_{i,\mathrm{Tr}}^* = (\mathbf{R}_{\mathbf{x}}^{1/2} \mathbf{\Phi}_i)^{\dagger} \mathbf{R}_{\mathbf{x}}^{1/2} \mathbf{b}_i \stackrel{\star}{=} (\mathbf{\Phi}_i^T \mathbf{R}_{\mathbf{x}} \mathbf{\Phi}_i)^{-1} \mathbf{\Phi}_i^T \mathbf{R}_{\mathbf{x}} \mathbf{b}_i,$$

for all i, where $\stackrel{\star}{=}$ holds if $\mathbf{R}_{\mathbf{x}}^{1/2}\mathbf{\Phi}_{i}$ has full column rank, and

$$\{ \mathbf{\Gamma}_{\lambda}^{*}, \mathbf{s}^{*} \} = \underset{\{ \mathbf{\Gamma}, \mathbf{s} \}}{\operatorname{argmin}} \mathbf{s}$$
s. to
$$\begin{bmatrix} \mathbf{s} \mathbf{I} & (\mathbf{I} \odot \mathbf{\Psi} \mathbf{\Gamma})^{T} \tilde{\mathbf{U}} \mathbf{V}^{-1} - \mathbf{B} \\ ((\mathbf{I} \odot \mathbf{\Psi} \mathbf{\Gamma})^{T} \tilde{\mathbf{U}} \mathbf{V}^{-1} - \mathbf{B})^{T} & \mathbf{s} \mathbf{R}_{\mathbf{x}}^{-1} \end{bmatrix} \succeq 0.$$

- ightharpoonup No prior knowledge scenarios equivalent to the cases $\mathbf{R}_{\mathbf{x}} = \mathbf{I}$ $\Rightarrow \|\mathbf{H}_{nv} - \mathbf{B}\|_{F} \equiv \operatorname{trace}(\mathbf{R}_{d}) \text{ and } \|\mathbf{H}_{nv} - \mathbf{B}\|_{2} \equiv \lambda_{\max}(\mathbf{R}_{d})$
- ► Additional assumptions can be incorporated into the designs

Finite-time consensus

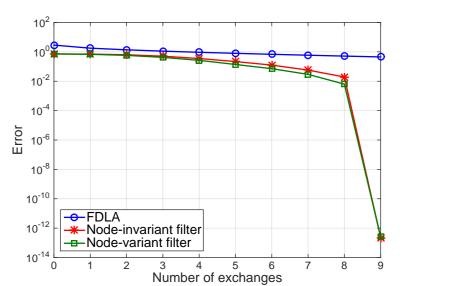
▶ Local implementation of the consensus operator $\mathbf{B}_{con} = \mathbf{1}\mathbf{1}^T/N$

The operator \mathbf{B}_{con} can be written as a filter $\sum_{l=0}^{N-1} c_l \mathbf{S}^l$ for some \mathbf{S} associated with an undirected graph \mathcal{G} if and only if \mathcal{G} is connected.

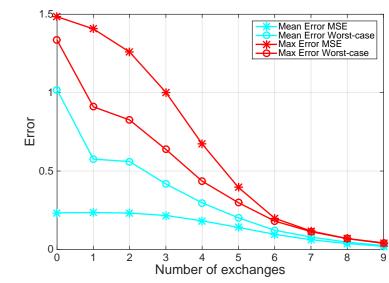
- ► If the weights in S can be selected (e.g., choose S = L) ⇒ consensus is achieved in finite time for connected graphs

distributed linear averaging (FDLA), 2) Graph filter approx., 3)

- ► Key: B_{con} is low-rank (repeated eigenvalues well-suited for approx.) ► We compare the performance of three methods: 1) Asymptotic fastest
- ► Compare worst-case and mean error design (50 nodes)



Node-variant graph filter approx.



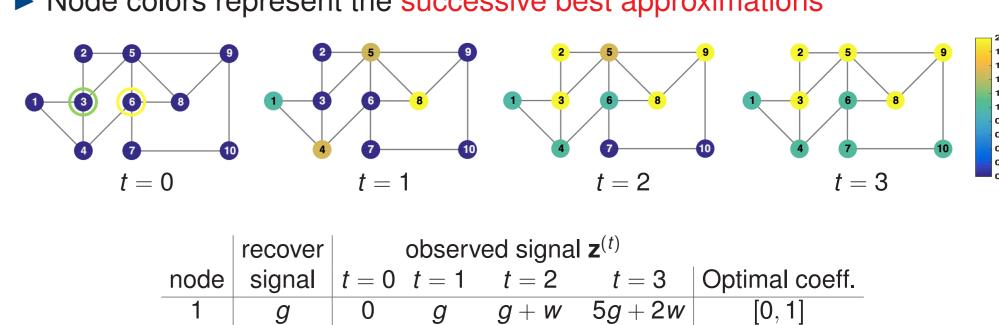
 $\mathbf{B}_{\mathcal{SR}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}^T$

Analog network coding (ANC)

► In ANC we focus on the transmission from sources to sinks

⇒ Main results still hold for the modified framework

- ⇒ Leverage graph filters to design ANC schemes
- ⇒ Subset of the nodes in a graph
- ► Consider a 10-node undirected graph
- ► Nodes 3 and 6 are sources
- ► Node 3 transmits to 1, 4, 6, 7, and 10
- ▶ Node 6 transmits to the remaining ones \blacktriangleright Denote by g and w the signals injected by nodes 3 and 6, respectively
- ► Node colors represent the successive best approximations



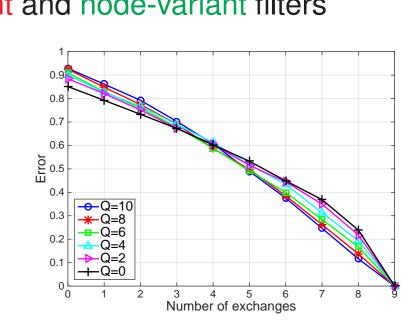
Spectrum mismatch

► Assume that B and S share Q eigenvectors

► Generate 1000 Erdős-Rényi graphs (N=10)

- \Rightarrow Higher Q, closer to being simultaneously diagonalizable
- ► Plot average errors for node-invariant and node-variant filters

0 1 2 3 4 5 6 7 8 Number of exchanges



 $4g + 2w \ 4g + 3w$ [-2, 0, 0.5]

 $w = g + 2w \mid [0, 0, -2, 1]$

- ► Performance of node-invariant filter is sensitive to changes in *Q*
- ► Node-variant filters are robust to the spectral differences of B and S

References

- D. I. Shuman et al., "The emerging field of signal processing on graphs," Signal Process. Mag., 2013.
- A. Sandryhaila and J. Moura, "Discrete signal processing on graphs," IEEE TSP, 2013.
- D. I. Shuman, P. Vandergheynst, and P. Frossard, "Chebyshev polynomial approximation for distributed signal processing," DCOSS, 2011.

A. Sandryhaila, S. Kar, J. Moura, "Finite-time distributed consensus through graph filters," ICASSP, 2014.

- S. Barbarossa, G. Scutari, and T. Battisti, "Distributed signal subspace projection algorithms with maximum convergence rate for sensor networks with topological constraints," ICASSP, 2009.
- S. Segarra et al., "Distributed linear network operators using graph filters," arXiv, 2015.

https://www.seas.upenn.edu/~ssegarra/