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ABSTRACT

Effective operation of next-generation communication networks
requires the deployment of a high number of base stations (BSs) ca-
pable of adapting dynamically their available resources to the chang-
ing environment. The resources include link layer variables (user-
channel allocation and user-BS assignment) that, due to their binary
nature, render the design challenging. This work proposes algo-
rithms for user-BS allocation in cellular networks where users access
orthogonally and close-by BSs use non-interfering channels. The
user-BS allocation algorithms are designed jointly with the power,
rate, and user-channel allocation, and take into account the dynamic
environment. Three different algorithms are designed, each of them
updates (adapts) the user-BS allocation at a different speed. We
show that although the linear relaxation of all the binary variables
is not optimal, a Benders’ decomposition approach can be used to
find the optimal solution. To accomplish this, we split the original
problem so that the user-BS variables are isolated, relax the remain-
ing binary variables, and solve the (sub-)problems iteratively.

Index Terms— User association, Base station selection, Ben-
ders’ decomposition, Stochastic optimization.

1. INTRODUCTION

Association of users with base stations (BSs) is a classical problem
in wireless communications. Traditional designs assign users to BSs
trying to maximize their signal-to-noise ratio (SNR), while balanc-
ing load among cells. In contrast to traditional networks, future net-
works are expected to be very dense and their state (SNRs, user loca-
tions, traffic load and quality of service requirements) is expected to
change quickly. In such scenarios, the design of user-to-BS assign-
ment algorithms is more challenging [1, 2]. The algorithms must
account for the operating conditions of each BS, adapt quickly to
changes in the environment and be jointly designed with the resource
allocation (RA) schemes that optimize the cells’ performance.

Many recent works have investigated the problem of user-BS
assignment both in the context of cellular and heterogeneous net-
works [3, 4]. The network operating conditions considered are di-
verse: uplink and downlink [5, 6, 7, 8] optimization, fast and slow-
varying fading scenarios [9, 10], and co-channel and orthogonal de-
ployments [10, 11, 12]. Preliminary works relied more on heuristic
approaches, while more recent works typically cast the user-BS allo-
cation problem as NP-hard and then propose (either heuristic [13] or
optimization-based [14]) approximated schemes to solve it. Powers,
rates and/or beamformers are designed to maximize the aggregated
rate while keeping interference under control. Interest in developing
energy-efficient schemes [15, 7] has been growing in the last years.
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Similarly, there is an effort to incorporate additional variables to the
state information [16] and to develop distributed solutions [14, 9].

In this paper, we design fast RA and user-BS assignment
schemes for cellular networks with orthogonal transmissions [12,
17]. The schemes are obtained as the solution to a non-convex
optimization, which aims at maximizing the aggregated transmit
rate while minimizing the aggregated transmit power. Rate and
power prices are allowed to be different across users, BSs and
time instants, providing a means to represent the differences among
users and BSs. Constraints accounting for orthogonal transmissions
within the same BS, orthogonal transmissions within close-by BSs
and allowing users to be connected to only one BS, are also consid-
ered. We design three algorithms with different user-BS assignment
updating frequency. First, we assume that the user-BS assignment
can be instantaneously adapted at each time slot; then, that it can
be adapted only at the beginning of each planning period (which
is composed of several slots); and, finally, that it can change at
each slot, but penalizing each handover. Our main contribution is
to develop algorithms capable of finding the optimal solution with
moderate complexity. Key to the design is to use decomposition
methods that split the variables into different sets, isolating the ones
hard to optimize (binary user-BS assignment variables). Due to the
structure of our problem (and more specifically, the interference
model considered [12, 17]), the Benders’ Decomposition Approach
(BDA), which is used in stochastic programming to handle large
scale mixed-integer-linear programs [18], is well-suited to address
such decomposition. To facilitate exposition, we use several simpli-
fying assumptions: perfect channel state information, single-antenna
communications, and fixed channel-to-BS allocation, to name a few.
However, the approach in the paper can be extended to scenarios
where those assumptions do not hold true. Since the expressions
for the power and channel assignment are similar to those in other
RA problems, the main novelty is on the design of the user-BS
assignment algorithms.

2. SYSTEM MODEL

Consider a deployment with J BSs, I users, and K frequency-flat
orthogonal channels (indexed by j, i and k, respectively). Binary
variables wi,j are used to represent the user-BS assignment. Specif-
ically, wi,j=1 if user i is connected to BS j, and wi,j=0 otherwise.
Similarly, binary variable wk

i,j will be one if channel k in BS j is
assigned to user i, and zero otherwise. Because we consider orthog-
onal access if wk

i,j=1, then it must hold that wk
i′,j=0 for all i′ ̸= i.

This is guaranteed if
∑

∀i w
k
i,j ≤ 1, ∀(j, k).1

1To make the notation less heavy, limits in the summations and variables
specifying (indexing) the constraints will be dropped whenever clear from
the context. For example, constraint

∑
∀i w

k
i,j ≤ 1, ∀(j, k), will be written

as
∑

i w
k
i,j ≤ 1.



The system operates in time slots t, whose duration typically
corresponds to the coherence time of the channel (e.g., 10 millisec-
onds). The state of the overall system at time t will be denoted as
S[t]. At the very least, S[t] will include the fading channel coeffi-
cients, but it may also account for other variables relevant for the RA
(such as locations, queue lengths, or battery levels). For simplicity,
we will assume that the value of the stochastic process S[t] at time
t is perfectly known. However, the results in the paper can be easily
extended to the case of imperfect state information.

At each time t, the transmission power and rate at link (i, j, k)
are allowed to change (for the sake of exposition, let us assume
that we focus on the downlink channel, so that the transmitter is
the BS). Let pki,j [t] denote the “nominal” power allocated to that
link. By “nominal” we mean that power pki,j [t] is consumed only
if both wi,j [t] and wk

i,j [t] are one. Under bit error rate or capacity
constraints, the instantaneous nominal rate rki,j [t] and the nominal
power pki,j [t] are coupled. To be more specific, let hk

i,j [t] denote
the power fading coefficient divided by the noise and interference
at link (i, j, k), and assume that rate is given by the capacity for-
mula. Then, the (increasing) power-to-rate function can be written
as Ck

i,j(S[t], p) = Ck
i,j(h

k
i,j [t], p) := log2(1 + hk

i,j [t]p).

The optimal RA is obtained as the solution to a constrained op-
timization problem. The design variables are X := {pki,j [t], wk

i,j [t],
wi,j [t], ∀(i, j, k) and t=1, ..., T}, where T denotes the planning
horizon (typically in the order of seconds). Powers are constrained
to be non-negative and the assignment variables to be binary. Max-
imum peak power constraints require pki,j [t] ≤ pmax

i,j [t]. As already
explained, orthogonal access requires

∑
i w

k
i,j [t] ≤ 1. Finally, we

consider that at given time instant t, a user i can be served by at most
one BS. Mathematically, this is guaranteed if

∑
j wi,j [t] ≤ 1. The

constraint could be modified to allow users to be connected to more
than one BS without changing the basic structure of the problem.

The optimization aims at maximizing the aggregate rate while
minimizing the aggregate power. To be specific, let ρi,j [t] represent
the price of the rate transmitted at time t and let πi,j [t] represent
the cost of the power transmitted at time t. Using such prices (their
physical interpretation will be discussed later on), the nominal re-
ward if tuple (i, j, k) is activated at time t is defined as φk

i,j [t] :=

ρi,j [t]C
k
i,j(h

k
i,j [t], p

k
i,j [t]) − πi,j [t]p

k
i,j [t]. The objective to be opti-

mized is then f0(X ) :=
∑T

t=1

∑
j,i wi,j [t]

∑
k w

k
i,j [t]φ

k
i,j [t]. The

reason to consider generic prices ρi,j [t] and πi,j [t] is to keep our
formulation general. In practice, they can represent (fixed or real-
time) prices set by operators; static multipliers associated with av-
erage rate and power constraints; marginal prices associated with
utility/cost functions that effect fairness [19]; or state variables (con-
gestion, battery levels) accounting for the backhaul network [20]; to
name a few. Allowing these prices to be different for each i and j
is instrumental to cope with the diverse and quick-changing condi-
tions of future networks. For example, if j is a small BS powered
by a battery, costs πi,j [t] will be set to high values. Differently, BSs
connected to the power grid and capable of handling many connec-
tions are expected to use values of ρi,j [t] and πi,j [t] that yield high
rewards (high ρi,j [t] and small πi,j [t]), so that assignments to them
are promoted. Another example is a BS whose main purpose is to
give service to a specific (predetermined) group of users. In that
case, the values of ρi,j [t] and πi,j [t] will vary sharply with i, so that
the reward for internal users is much higher than that for external
users. Any linear combination of the previous is also possible.

3. FAST USER-BS ASSIGNMENT

The first formulation considers that wi,j can be adapted at the same
rate than pki,j and wk

i,j (i.e., every t). Hence, we aim at solving

max
X

∑T
t=1

∑
i,j,k w

k
i,j [t]φ

k
i,j [t] (1a)

s. to :
∑

i w
k
i,j [t] ≤ 1,

∑
j wi,j [t] ≤ 1 (1b)

wk
i,j [t] = 0 if k /∈ Kj , w

k
i,j [t] ≤ wi,j [t] (1c)

pki,j [t]∈[0, pmax
i,j ], wk

i,j [t]∈{0, 1}, wi,j [t]∈{0, 1}; (1d)

where Kj is the set of channels that the operator allocated to BS j (if
not all). Note that the objective in (1a) is not the same than the orig-
inal one in f0(X ). Specifically, variables wi,j [t] are not present in
(1a). To guarantee that the nominal reward

∑
k w

k
i,j [t]φ

k
i,j [t] is not

considered if wi,j [t] = 0, constraint wk
i,j [t] ≤ wi,j [t] [cf. (1c)] was

introduced. Clearly, if wi,j [t] ∈ {0, 1} both formulations are equiv-
alent (meaning that they yield the same objective value and the same
effective power and rate values). The reason to write the problem
as in (1) is twofold: i) the relaxed version of (1) (which deals with
binary variables as if they were real variables in the [0, 1] interval)
can be recast as a convex problem and ii) the structure of (1) is more
amenable to be decomposed into smaller optimization problems (we
will be more specific about this issue later on). Both issues will be
critical to find efficient algorithms that solve the problem. Last but
not least, additional constraints on wi,j [t] limiting the number of
users per BS or allowing users to be connected to more than one BS
can be incorporated to (1) without changing its basic structure.
Remark: Interference among BSs. The previous formulation (in
particular, the definition of Ck

i,j) does not explicitly consider the ef-
fect that changing the power has on the interference at other BSs (the
effect is considered implicitly, when acquiring the values of hk

i,j [t]).
This approach in not unusual in works dealing with user assignment.
In [12] the interference is assumed to be negligible due to appropri-
ate reuse factors or inter-cell interference cancellation techniques. In
[17, 21, 22] rather than taking into account the dynamics of interfer-
ence, it is assumed that transmissions are exposed to an average level
of interference that depends only on long-term cell-load conditions.
Hence, interference is assumed to be independent of the specific user
assignment and scheduling. In an orthogonal-access configuration,
interference can be considered negligible provided that if BS j and
j′ are close, then Kj and Kj′ do not overlap. If the channel-BS
allocation is not carried out beforehand (of if it does not guarantee
orthogonality among close-by BSs), then constraints guaranteeing
that conflicting BSs are not active simultaneously must be enforced:
i.e., wk

i,j [t] + wk
i′,j′ [t] ≤ 1 if (i, j) and (i′, j′) are in conflict.

3.1. Optimal Solution

Solving (1) requires optimizing jointly over the set of variables X .
To facilitate such a task, our approach is to split X into smaller sets
and take advantage of the decomposable structure of (1). To be more
specific, the idea is to leverage the fact the joint optimization over
(x, y) of a generic function f(x, y) can be performed as follows.
Find first x∗(y) := argmaxx f(x, y). Then, substitute x∗(y) into
the objective and solve y∗ = argmaxy f(x

∗(y), y). Finally, find x∗

as x∗ = x∗(y∗). For the problem in (1), X is split into three differ-
ent sets of variables: X1, which accounts for the powers pki,j [t]; X2,
which accounts for all the channel allocation variables wk

i,j [t]; and
X3, which accounts for all the user-BS assignment variables wi,j [t].
Next, we present several results dealing with the optimization of
those subsets. Proofs are omitted due to space limitations.



We start with the optimization of X1 with X2 and X3 given, i.e.,
with finding X ∗

1 (X2,X3).
Proposition 1: Optimal power allocation. The optimal value
of the nominal powers {pk∗i,j [t] ∀(i, j, k, t)} does not depend on
the values of {wk∗

i,j [t], w
∗
i,j [t]} and can be found as pk∗i,j [t] =

argmax0≤p≤pmax
i,j

ρi,j [t]Ci,j(h
k
i,j [t], p)− πi,j [t]p.

The result in the proposition follows because: (1) can be decom-
posed (separated) across time; (1a) is non-decreasing with pki,j [t];
and the value of pki,j [t] does not have an impact on S[t′] for t′ > t.
Note also that the result deals with the nominal powers. Clearly, the
effective transmit-powers do depend on {wk∗

i,j [t], w
∗
i,j [t]}. 2

Prop. 1 states that X ∗
1 (X2,X3) = X ∗

1 . The ensuing propo-
sition deals with the optimization over X2 with X3 given and with
X1 = X ∗

1 . To simplify notation, the values of pk∗i,j [t] are used to
define the optimal nominal reward per (j, k, t) tuple as: φk∗

i,j [t] =

ρi,j [t]Ci,j(h
k
i,j [t], p

k∗
i,j [t])− πi,j [t]p

k∗
i,j [t].

Proposition 2: Optimal channel-user assignment. If wi,j [t] ∈
{0, 1} are given and pki,j [t] = pk∗i,j [t], then the optimal wk∗

i,j [t] ∈
{0, 1} can be found as follows. For each (j, k, t) tuple:
i) Define Ik

j [t] := {i : wi,j [t] = 1 &φk∗
i,j [t] = maxl φ

k∗
l,j [t]wl,j [t]}

as the set of winner users.
ii) Select one user from Ik

j [t] (the pick can be random), call it i′,
and then set wk∗

i′,j [t]=1 and wk∗
i,j [t]=0 for all i ̸= i′.

Prop. 2 states that the optimal channel assignment follows a greedy
policy [23]. Specifically, for each (j, k, t) tuple, the policy first
finds the users who are connected to the specific BS. Then, it selects
the one with the highest optimal reward and assigns the channel to
that user. If Ik

j [t] contains more than one user, any random pick is
equally optimum. Clearly, this policy can be run in polynomial time.

To summarize the results so far, let f̃0(X ) be the extended ver-
sion of f0(X ), so that f̃0(X ) = f0(X ) if X satisfies constraints
(1b)-(1d), and f̃0(X )=−∞ otherwise. Our initial goal was to solve
maxX f̃0(X ). Upon splitting X into X1,X2,X3 we have that

max
X1,X2,X3

f̃0(X1,X2,X3) = max
X2,X3

f̃0(X ∗
1 (X2,X3),X2,X3)

= max
X2,X3

f̃0(X ∗
1 ,X2,X3) = max

X3

f̃0(X ∗
1 ,X ∗

2 (X ∗
1 ,X3),X3) (2)

The previous equations demonstrate that to solve the problem in (1),
it suffices to execute the following steps: a) find X ∗

1 using Prop. 1;
b) find X ∗

3 using the right hand side of (2), the output of step a) and
Prop. 2; and c) find X ∗

2 using Prop. 2, X ∗
1 (step a) and X ∗

3 (step b).
As already discussed, the complexity to solve a) and c) is poly-

nomial, so that the critical issue is how to solve the user-BS assign-
ment in step b). The problem is not convex because variables wi,j [t]
are binary. Moreover, it can be shown that, for the problem at hand,
the relaxation wi,j [t] ∈ [0, 1] is not tight. Several alternatives arise
to solve the binary optimization. If the problem dimensionality is
not very high, variants of the branch-and-bound algorithm for mixed
integer programs can be used [24] (for each t we have to solve a
problem with IJ binary variables and IJK real variables). If the
dimensionality is too high, a reasonable choice is to rely on decom-
position methods that solve for the binary variables iteratively and
then use Props. 1 and 2 to solve for the remaining variables. One
specially suited for the problem at hand is the BDA [18], which is
extensively used in stochastic programming when dealing with very

2Due to space limits and to facilitate exposition, the paper assumes
single-antenna communications. However, Prop. 1 also holds true for
multiple-antenna scenarios. In such scenarios, beamformers/precoders for
link (i, j, k) at time t should also be designed (adapted) to maximize φk

i,j [t].

large-scale linear programs. Details on this method (and on how to
use it for our problem) will be given in the next section.

4. SLOW USER-BS ASSIGNMENT

The formulation in (1) assumed that wi,j could be adapted at the
same speed than pki,j and wk

i,j . However, in many practical setups,
changing the value of wi,j (which requires coordination among BSs)
is more difficult than changing the value of pki,j and wk

i,j (which
only requires coordination within the same BS). In this section, we
solve the RA problem for t = 1, ..., T assuming that {wi,j} remains
constant during the planning horizon. To be specific, let X ′ :=
{pki,j [t], wk

i,j [t], wi,j , ∀(i, j, k) and t=1, ..., T} and solve [cf. (1)]

max
X ′

∑T
t=1

∑
i,j,k E

[
wk

i,j [t]φ
k
i,j [t]

]
(3a)

s. to :
∑
i

wk
i,j [t]≤1,

∑
i

wi,j≤1, wk
i,j [t] = 0 if k /∈ Kj , (3b)

wk
i,j [t]≤wi,j , p

k
i,j [t]∈[0, pmax

i,j ], wk
i,j [t]∈{0, 1}, wi,j∈{0, 1}. (3c)

Relative to (1), (3) not only replaces wi,j [t] with wi,j , but also in-
cludes an expectation in (3a). As T grows large, the law of large
numbers guarantees that the effect of including the expectation in
(3a) vanishes. The reason to include the expectation is that wi,j must
be found before the planning period starts (i.e., at t = 0) and, hence,
the actual values of φk

i,j [t] for t = 1, ..., T (which are random) are
not known3. The solution to (3) will be then found in two phases.
The first phase (off-line phase) is executed at t = 0 and finds w∗

i,j .
The second phase (online phase) is executed at each t = 1, ..., T and
finds pk∗i,j [t] and wk∗

i,j [t] with w∗
i,j given.

Strictly speaking, (3) is not separable across time. However,
if the IJ values of wi,j are given, the problem can again be solved
for each t separately. Equally important, if wi,j are given, pk∗i,j [t] and
wk∗

i,j [t] can be found in closed form (Props. 1 and 2), so that the com-
putational complexity during the online phase is small. Moreover,
we will see soon that this favorable structure can also be leveraged
in the off-line phase. Although not investigated in this conference
paper, convex algorithms can also take advantage of the aforemen-
tioned structure to design low-complexity approximations to w∗

i,j .
The remaining of the section is devoted to develop an algorithm

to find w∗
i,j . Since the problem is not separable across time, the

number of variables is much higher than that in Sec. 3 and branch-
and-bound methods have to be discarded. Our approach to design
an efficient algorithm builds on two observations. O1) After finding
pk∗i,j [t], the remaining optimization is a mixed-integer-linear program
(cf. Prop. 1). O2) The binary variables can be split into two sets: a
smaller set X3 (containing wi,j) with cardinality IJ that is difficult
to optimize; and a larger set X2 (containing wk

i,j [t]) with cardinality
IJKT that is easy to optimize (cf. Prop. 2). The BDA is specially
suited for exploiting these properties. The main idea of the BDA
is to decompose the problem into a master problem (dealing with
the integer/binary optimization) and a subproblem (dealing with the
real/linear optimization), which are solved iteratively (sequentially).
Convergence to the optimal solution is guaranteed [18]. To describe
the application of the BDA to the problem at hand more clearly, let
l denote an iteration index and let w(l)

i,j and w
k,(l)
i,j [t] denote, respec-

tively, the solutions to the master problem and the subproblem at
iteration l. The values of w

k,(l)
i,j [t] are found using Prop. 2 with

wi,j = w
(l)
i,j . Solving the master problem is bit more intricate. For

3Some works assume that the state S[t] is known beforehand (non-
causally). If that were the case, the expectation in (3a) would not be required.



each l, the master problem needs to incorporate information of the
optimal solution of the subproblems for iterations l′ < l. In partic-
ular, the value of the Lagrange multipliers associated with the con-
straints of the subproblem have to be used as input to the master
problem. To be rigorous, at iteration l, the master problem is

{w(l)
i,j} =argmax{z,wi,j} z (4a)

s. to : z ≤
∑

t,j,k

[
β
(l′)
t,j,k +

∑
i Ω

(l′)
t,i,j,kwi,j

]
, l′ < l (4b)∑

i wi,j ≤ 1, wi,j ∈ {0, 1}; (4c)

where z is an auxiliary variable, and β
(l′)
t,j,k and Ω

(l′)
t,i,j,k are, re-

spectively, the values of the multipliers associated with constraints∑
i w

k
i,j [t] ≤ 1 and wk

i,j [t] ≤ w
(l′)
i,j of the subproblem at iteration l′.

Unfortunately, due to space limitations, the details of the derivation
of (4) cannot be included in the paper; see [18, 25] for details. A
pseudo-code summarizing the steps of the algorithm is given next.
Algorithm 1: Off-line phase.
[Step1] Master problem: If l = 0, initialize w

(0)
i,j so that each user

is assigned to the closest BS. If l ≥ 1, solve (4) using the outputs of
[Step2] for l′ < l.
[Step2] Subproblem: Use Props. 1 and 2 to solve (3) over pki,j [t] and
wk

i,j [t], with wi,j = w
(l)
i,j . Find and store the value of multipliers

β
(l)
t,j,k and Ω

(l)
t,i,j,k.

[Step3] If w(l−1)
i,j = w

(l)
i,j , stop. If not, set l= l+1 and go to [Step1].

Regarding the algorithm details, to deal with the expectations in
(3), we use a MonteCarlo approach that draws samples of S[t].
Moreover, in order to accelerate Benders convergence speed, we
use Pareto-optimal cuts [26], [27]; we also find closed forms for
the dual variables in [Step2], which reduce computational times for
large-scale case studies. For the test cases considered in this paper,
our algorithm converges in 3-10 iterations. As already explained,
the algorithm to be run during the online phase consists in using
Props. 1 and 2 for each t using as wi,j [t] the output generated by
Alg. 1 (which is the same for all t within the planning horizon).

5. PENALIZING FAST USER-BS CHANGES
In Sec. 3, wi,j was allowed to change at every time t. In Sec. 4,
our algorithm operated in two time scales and allowed wi,j to be
updated only at the slow scale (every T slots). The second algorithm
entails lower signalling costs, but it also achieves a lower aggregate
reward (it has to satisfy constraints wi,j [t] = wi,j [t − 1], which
are not imposed to the first algorithm). In this section, we follow a
hybrid approach so that: i) wi,j is allowed to change at every time t;
and ii) a new cost that penalizes user-BS updates is considered. By
tuning the penalty cost, one can make the hybrid scheme as close as
the schemes in Secs. 3 or 4 as desired. The basic idea is to modify
the solution in Sec. 3. To that end, let si,j [t] ∈ {0, 1} represent
switching variables (which are one if wi,j [t] ̸= wi,j [t − 1]) and
λi,j [t] the non-negative cost of updating the value of wi,j [t]. Using
those conventions, now t the problem to be solved at each time is

max
X1[t],X2[t],X̃3[t]

∑
i,j,k w

k
i,j [t]φ

k
i,j [t]−

∑
i,j λi,j [t]si,j [t] (5a)

s. to : (1b), (1c), (1d) (5b)
− si,j [t] ≤ wi,j [t]− wi,j [t−1] ≤ si,j [t], si,j [t]∈{0, 1}; (5c)

where X1[t] = {pki,j [t]}∀i,j,k, X2[t] = {wk
i,j [t]}∀i,j,k, and X̃3[t] =

{wi,j [t], si,j [t]}∀i,j . The main difference relative to (1) is the in-
corporation of the penalty in (5a) and the constraints in (5c), which
require si,j [t] to be one if |wi,j [t]−wi,j [t−1]| = 1. The approach to

solve (5) is similar to that to solve (1). If variables in X̃ ∗
3 [t] (which

now also include si,j [t]) are known, then X ∗
1 [t] and X ∗

2 [t] can be
found using Props. 1 and 2. To solve for X̃ ∗

3 [t] either branch-and-
bound algorithms or a small modification of the BDA presented in
Alg. 1 can be used. We stress that the formulation proposed in (5)
considers wi,j [t − 1] as given and does not need to account for the
effect of the optimal RA on future time instants.

The value of λi,j [t] must be set based on the operating condi-
tions of the system. For example, if λi,j [t] = 0 the solution to (5)
is the same than that in Sec. 3. Similarly, if the user-BS assign-
ment is initialized using Algorithm 1 and one sets λi,j [t] = ∞, the
algorithm reduces to that in Sec. 4. A more “sophisticated” alterna-
tive is to set a maximum rate of handovers (say η) and then rely on
stochastic dual methods [28, 29] to update the cost as λi,j [t + 1] =
max{0, λi,j [t] + µ(si,j [t]− η)}, where µ is a small stepsize.

6. NUMERICAL RESULTS
Due to space limits, only results for two test cases are presented. Ad-
ditional results will be available in the journal version of the paper.
We consider a 2x2 kilometers (km) grid, where I=120 users are lo-
cated uniformly at random and J=12 BSs are located at positions (in
km): (0.5,0.5), (0.5,1.5), (1.5,1.5), (1.5,1.5), (0.65,0.85), (0.25,0.85),
(1,0.9), (1.75,1), (1.25,0.75), (0.9,1.5), (0.3,1.75), (1.25,1.25). There
are K=32 channels, each with a bandwidth of Bc. Channel gains
follow a space-free model and a block fading Rayleigh channel is
assumed. BSs j = 1, 2, 3, 4 transmit 10 watts and the remaining
ones 2 watts. Noise level is set so that the average SNR in the grid
(relative to the closest BS) is 15 dB. The planning horizon is T=100
and results are averaged over 30 planning horizons. Prices are set
so that ρi,j [t] = I/J + ρi and πi,j [t] = πj . The values of ρi and
πj are set so that, for the algorithm in Sec. 3, the BSs transmit with
their maximum power and all users receive at least 10 bits per 1/Bc.
Users move with a speed of 5 meters per T .

Since we focus on designing algorithms for user-BS association,
all tested schemes implement the optimal power and user-channel
policies in Props. 1 and 2. We are interested in comparing the per-
formance of: sc1) the scheme in Sec. 3; sc2) the scheme in Sec. 4;
sc3) the scheme in Sec. 5 with λi,j = 0.01; sc4) the scheme in Sec.
5 with λi,j = 5; sc5) the scheme in Sec. 5 where λi,j are tuned so
that η = 5%; sc6) a heuristic scheme that assigns the user to the BS
with the highest instantaneous SNR; and sc7) a scheme that assigns
the user to the BS with the highest average SNR.

The absolute gap relative to the optimal solution and the per-
centage of handovers are: (0.00%, 33.7%) sc1; (3.55%, 2.7%) sc2;
(0.03%, 32.4%) sc3; (8.67%, 2.7%) sc4; (5.35%, 4.8%) sc5; (13.9%,
5.3%) sc6; and (19.7%, 1.7%) sc7). If only 4 of the small BSs and
the 32 closest users are considered, and T is reduced to T = 10, the
results are (0.00%, 11.8%) sc1; (16.2%, 0.6%) sc2; (0.01%, 10.9%)
sc3; (12.1%, 4.0%) sc4; (2.90%, 5.1%) sc5; (4.14%, 6.40%) sc6;
and (23.8%, 0.4%) sc7. If the schemes in Sec. 5, are not initialized
with the solution in Sec. 4, the loss (gap) increases around 0.5-1%.
Results confirm the validity or the theoretical claims and show mod-
erate gains for the more advanced schemes. This seems to suggest
that if the power and user-channel assignment are adapted at a fast
rate, the rate of adaptation of the user-BS assignment is not critical.
Another interesting point is that by tuning the value of λi,j [cf. (5a)],
the rate of handovers can be effectively kept under control. Simula-
tions also reveal that the schemes in Sec. 5 are not very sensitive
to initialization. Hence, they constitute an interesting alternative for
practical deployments. Lastly, the close performance of the proposed
algorithms, motivate the development of suboptimal approximations
to the optimal solution.
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