Network Science analytics

Online social media Internet Clean energy and grid analytics

- **Desiderata**: Process, analyze and learn from network data [Kolaczyk’09]
Network Science analytics

- **Desiderata**: Process, analyze and learn from network data [Kolaczyk’09]

- Network as graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships

- Interest here not in G itself, but in data associated with nodes in \mathcal{V}
 - The object of study is a graph signal

- Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Online social media | Internet | Clean energy and grid analytics
Motivating examples – Graph signals

▶ **Graph SP**: broaden classical SP to graph signals [Shuman et al.'13]

⇒ **Our view**: GSP well suited to study network processes

▶ **As.**: Signal properties related to topology of G (e.g., smoothness)

⇒ **Algorithms** that fruitfully leverage this relational structure
Graph signals

Consider a graph $G(V, E)$. Graph signals are mappings $x : V \to \mathbb{R}$

\Rightarrow Defined on the vertices of the graph (data tied to nodes)

May be represented as a vector $x \in \mathbb{R}^N$

$\Rightarrow x_n$ denotes the signal value at the n-th vertex in V

\Rightarrow Implicit ordering of vertices

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_9 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.7 \\ 0.3 \\ \vdots \\ 0.7 \end{bmatrix}$$
Graph-shift operator

- To understand and analyze \mathbf{x}, useful to account for G’s structure

- Graph G is endowed with a **graph-shift** operator $\mathbf{S} \in \mathbb{R}^{N \times N}$

 $\Rightarrow S_{ij} = 0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$ (captures local structure in G)

- \mathbf{S} can take nonzero values in the edges of G or in its diagonal

- **Ex:** Adjacency \mathbf{A}, degree \mathbf{D}, and Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{A}$ matrices
- **S** is a linear operator that can be computed locally at the nodes in \mathcal{V}

- Consider the graph signal $y = Sx$ and node i's neighborhood \mathcal{N}_i
 \[y_i = \sum_{j \in \mathcal{N}_i} S_{ij} x_j, \quad i \in \mathcal{V} \]

- Recall $S_{ij} \neq 0$ only if $i = j$ or $(j, i) \in E$

- If $y = S^2x \Rightarrow y_i$ found using values x_j within 2 hops
- **As.:** S related to generation (description) of the signals of interest

 \Rightarrow Spectrum of $S = V \Lambda V^{-1}$ will be especially useful to analyze x

- The **Graph Fourier Transform (GFT)** of x is defined as

 $\tilde{x} = V^{-1}x$

- While the **inverse GFT (iGFT)** of \tilde{x} is defined as

 $x = V \tilde{x}$

 \Rightarrow Eigenvectors $V = [v_1, ..., v_N]$ are the frequency basis (atoms)

- **Ex:** For the directed cycle (temporal signal) \Rightarrow GFT \equiv DFT
A graph filter $H : \mathbb{R}^N \to \mathbb{R}^N$ is a map between graph signals. Focus on linear filters, which are maps represented by an $N \times N$ matrix.

Polynomial in S of degree L, with coefficients $h = [h_0, \ldots, h_L]^T$.

Graph filter [Sandryhaila-Moura’13]

$$H := h_0 S^0 + h_1 S^1 + \ldots + h_L S^L = \sum_{l=0}^{L} h_l S^l$$

Key properties: shift-invariance and distributed implementation.

$H(Sx) = S(Hx)$, no other can be linear and shift-invariant. Each application of S only local info \Rightarrow only L-hop info for $y = Hx$.
Frequency response of a graph filter

- Using $S = V \Lambda V^{-1}$, filter is $H = \sum_{l=0}^{L} h_l S^l = V \left(\sum_{l=0}^{L} h_l \Lambda^l \right) V^{-1}$
Frequency response of a graph filter

- Using \(S = V \Lambda V^{-1} \), filter is
 \[
 H = \sum_{l=0}^{L} h_l S' = V \left(\sum_{l=0}^{L} h_l \Lambda^l \right) V^{-1}
 \]

- Since \(\Lambda^l \) are diagonal, use GFT-iGFT to write \(y = Hx \) as
 \[
 \tilde{y} = \text{diag}(\tilde{h})\tilde{x}
 \]

 \(\Rightarrow \) Output at frequency \(k \) depends only on input at frequency \(k \)

- Frequency response of the filter \(H \) is \(\tilde{h} = \Psi h \), with Vandermonde \(\Psi \)

 \[
 \Psi :=
 \begin{pmatrix}
 1 & \lambda_1 & \ldots & \lambda_1^L \\
 \vdots & \vdots & \ddots & \vdots \\
 1 & \lambda_N & \ldots & \lambda_N^L
 \end{pmatrix}
 \]
Using $S = V\Lambda V^{-1}$, filter is $H = \sum_{l=0}^{L} h_{l} S^{l} = V \left(\sum_{l=0}^{L} h_{l} \Lambda^{l} \right) V^{-1}$.

Since Λ^{l} are diagonal, use GFT-iGFT to write $y = Hx$ as $\tilde{y} = \text{diag}(\tilde{h})\tilde{x}$.

⇒ Output at frequency k depends only on input at frequency k.

Frequency response of the filter H is $\tilde{h} = \Psi h$, with Vandermonde Ψ:

$$\Psi := \begin{pmatrix} 1 & \lambda_{1} & \ldots & \lambda_{1}^{L} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_{N} & \ldots & \lambda_{N}^{L} \end{pmatrix}$$

GFT for signals ($\tilde{x} = V^{-1}x$) and filters ($\tilde{h} = \Psi h$) is different.
Q: Upon observing a graph signal y, how was this signal generated?

Postulate the following generative model:

1. An originally sparse signal $x = x(0)$
2. Diffused via linear graph dynamics S

 $x(l) = Sx(l-1)$
3. Observed y is a linear combination of the diffused signals

 $y = \sum_{l=0}^{L} h_l x(l) = Hx$

Model: Observed network process as output of a graph filter.
Q: Upon observing a graph signal y, how was this signal generated?

Postulate the following generative model:

- An originally sparse signal $x = x^{(0)}$
- Diffused via linear graph dynamics S \Rightarrow $x^{(l)} = Sx^{(l-1)}$
- Observed y is a linear combination of the diffused signals $x^{(l)}$

$$y = \sum_{l=0}^{L} h_l x^{(l)} = \sum_{l=0}^{L} h_l S^l x = Hx$$

Model: Observed network process as output of a graph filter

- View few elements in $\text{supp}(x) =: \{i : x_i \neq 0\}$ as seeds
Motivation and problem statement

- **Ex:** Global opinion/belief profile formed by spreading a rumor
 - What was the rumor? Who started it?
 - How do people weigh in peers’ opinions to form their own?

- **Problem:** Blind identification of graph filters with sparse inputs
Motivation and problem statement

- **Ex:** Global opinion/belief profile formed by spreading a rumor
 - What was the rumor? Who started it?
 - How do people weigh in peers’ opinions to form their own?

- **Problem:** Blind identification of graph filters with sparse inputs
 - **Q:** Given S, can we find x and the combination weights h from $y = Hx$?
 - Extends classical blind deconvolution to graphs
Leverage frequency response of graph filters ($U := V^{-1}$)

\[y = Hx \implies y = V \text{diag}(\psi h)Ux \]

\[\implies y \text{ is a bilinear function of the unknowns } h \text{ and } x \]
Leverage frequency response of graph filters ($U := V^{-1}$)

$$y = Hx \Rightarrow y = V \text{diag} (\Psi h) U x$$

\Rightarrow y is a bilinear function of the unknowns h and x

Problem is ill-posed $\Rightarrow (L + 1) + N$ unknowns and N observations

\Rightarrow As.: x is S-sparse i.e., $\|x\|_0 := |\text{supp}(x)| \leq S$
Leverage frequency response of graph filters ($U := V^{-1}$)

$y = Hx \Rightarrow y = V \text{diag}(\Psi h) Ux$

$\Rightarrow y$ is a bilinear function of the unknowns h and x

Problem is ill-posed $\Rightarrow (L + 1) + N$ unknowns and N observations

$\Rightarrow \text{As.}: x$ is S-sparse i.e., $\|x\|_0 := |\text{supp}(x)| \leq S$

Blind graph filter identification \Rightarrow Non-convex feasibility problem

find $\{h, x\}$, s. to $y = V \text{diag}(\Psi h) Ux$, $\|x\|_0 \leq S$
Key observation: Use the Khatri-Rao product to write y as

$$y = V(\Psi^T \odot U^T)^T \text{vec}(xh^T)$$

Reveals y is a linear combination of the entries of $Z := xh^T$
“Lifting” the bilinear inverse problem

➤ **Key observation:** Use the Khatri-Rao product \odot to write y as

$$y = V(\Psi^T \odot U^T)^T \text{vec}(xh^T)$$

➤ Reveals y is a **linear** combination of the entries of $Z := xh^T$

➤ Z is of rank-1 and row-sparse \Rightarrow Linear matrix inverse problem

$$\min_{Z} \text{rank}(Z), \quad \text{s. to } y = V(\Psi^T \odot U^T)^T \text{vec}(Z), \quad \|Z\|_{2,0} \leq S$$

\Rightarrow Pseudo-norm $\|Z\|_{2,0}$ counts the nonzero rows of Z

\Rightarrow Matrix “lifting” for blind deconvolution [Ahmed et al.’14]

➤ Rank minimization s. to row-cardinality constraint is NP-hard
“Lifting” the bilinear inverse problem

- **Key observation:** Use the Khatri-Rao product \(\odot \) to write \(y \) as

\[
y = V(\Psi^T \odot U^T)^T \text{vec}(xh^T)
\]

- Reveals \(y \) is a linear combination of the entries of \(Z := xh^T \)

- \(Z \) is of rank-1 and row-sparse \(\Rightarrow \) Linear matrix inverse problem

\[
\min_{Z} \text{rank}(Z), \quad \text{s. to} \quad y = V(\Psi^T \odot U^T)^T \text{vec}(Z), \quad \|Z\|_{2,0} \leq S
\]

\(\Rightarrow \) Pseudo-norm \(\|Z\|_{2,0} \) counts the nonzero rows of \(Z \)

\(\Rightarrow \) Matrix “lifting” for blind deconvolution [Ahmed etal’14]

- Rank minimization s. to row-cardinality constraint is NP-hard. **Relax!**
Algorithmic approach via convex relaxation

- **Key property:** ℓ_1-norm minimization promotes sparsity [Tibshirani’94]
 - Nuclear norm $\|Z\|_* := \sum_i \sigma_i(Z)$ a convex proxy of rank [Fazel’01]
 - $\ell_{2,1}$ norm $\|Z\|_{2,1} := \sum_i \|z_i^T\|_2$ surrogate of $\|Z\|_{2,0}$ [Yuan-Lin’06]
Algorithmic approach via convex relaxation

- **Key property**: ℓ_1-norm minimization promotes sparsity [Tibshirani’94]
 - Nuclear norm $\|Z\|_* := \sum_i \sigma_i(Z)$ a convex proxy of rank [Fazel’01]
 - $\ell_{2,1}$ norm $\|Z\|_{2,1} := \sum_i \|z_i^T\|_2$ surrogate of $\|Z\|_{2,0}$ [Yuan-Lin’06]

- Convex relaxation

\[
\min_{Z} \|Z\|_* + \alpha \|Z\|_{2,1}, \quad \text{s. to } y = V (\Psi^T \otimes U^T)^T \text{vec}(Z)
\]

\Rightarrow Scalable algorithm using method of multipliers
Algorithmic approach via convex relaxation

- **Key property:** ℓ_1-norm minimization promotes sparsity [Tibshirani’94]
 - Nuclear norm $\|Z\|_* := \sum_i \sigma_i(Z)$ a convex proxy of rank [Fazel’01]
 - $\ell_{2,1}$ norm $\|Z\|_{2,1} := \sum_i \|z_i^T\|_2$ surrogate of $\|Z\|_{2,0}$ [Yuan-Lin’06]

- **Convex relaxation**

 $$\min_{Z} \|Z\|_* + \alpha \|Z\|_{2,1}, \quad \text{s. to } y = V(\Psi^T \odot U^T)^T \text{vec}(Z)$$

 \Rightarrow Scalable algorithm using method of multipliers

- Refine estimates $\{h, x\}$ via iteratively-reweighted optimization
 \Rightarrow Weights $\alpha_i(k) = (\|z_i(k)^T\|_2 + \delta)^{-1}$ per row i, per iteration k

- **Exact recovery** conditions \Rightarrow Success of the convex relaxation
 \Rightarrow Random model on the graph structure \Rightarrow Recovery conditions
 \Rightarrow Probabilistic guarantees that depend on the graph spectrum
 \Rightarrow Blind deconvolution (in time) is a favorable graph setting
Numerical tests: Recovery rates

- **Recovery rates** over an \((L, S)\) grid and 20 trials
 - Successful recovery when \(\|x^* (h^*)^T - xh^T\|_F < 10^{-3}\)

- **ER** (left), **ER reweighted** \(\ell_{2,1}\) (center), **brain reweighted** \(\ell_{2,1}\) (right)

- **Exact recovery over non-trivial** \((L, S)\) region
 - Reweighted optimization markedly improves performance
 - Encouraging results even for real-world graphs
Numerical tests: Brain graph

- Human brain graph with $N = 66$ regions, $L = 6$ and $S = 6$

- Proposed method also outperforms alternating-minimization solver
 ⇒ Unknown $\text{supp}(x) \approx$ Need twice as many observations
Multiple output signals

- Suppose we have access to P output signals $\{y_p\}_{p=1}^P$.
Formulation

- As.: \(\{x_p\}_{p=1}^P \) are \(S \)-sparse with common support
Formulation

- **As.**: $\{x_p\}_{p=1}^P$ are S-sparse with common support

- Concatenate outputs $\bar{y} := [y_1^T, \ldots, y_P^T]^T$ and inputs $\bar{x} := [x_1^T, \ldots, x_P^T]^T$

- Unknown rank-one matrices $Z_p := x_p h^T$. Stack them
 - Vertically in rank one $\bar{Z}_v := [Z_1^T, \ldots, Z_P^T]^T = \bar{x} h^T \in \mathbb{R}^{NP \times L}$
 - Horizontally in row sparse $\bar{Z}_h := [Z_1, \ldots, Z_P] \in \mathbb{R}^{N \times PL}$
As.: \(\{x_p\}_{p=1}^P \) are \(S \)-sparse with common support

Concatenate outputs \(\bar{y} := [y_1^T, \ldots, y_P^T]^T \) and inputs \(\bar{x} := [x_1^T, \ldots, x_P^T]^T \)

Unknown rank-one matrices \(Z_p := x_p h^T \). Stack them

⇒ Vertically in rank one \(\bar{Z}_v := [Z_1^T, \ldots, Z_P^T]^T = \bar{x} h^T \in \mathbb{R}^{NP \times L} \)

⇒ Horizontally in row sparse \(\bar{Z}_h := [Z_1, \ldots, Z_P] \in \mathbb{R}^{N \times PL} \)

Convex formulation

\[
\min_{\{Z_p\}_{p=1}^P} \| \bar{Z}_v \|_* + \tau \| \bar{Z}_h \|_{2,1}, \quad \text{s. to } \bar{y} = \left(I_P \otimes \left(V (\psi^T \odot U^T)^T \right) \right) \text{vec}(\bar{Z}_h)
\]
Formulation

- **As.:** \(\{x_p\}_{p=1}^P \) are \(S \)-sparse with common support

- Concatenate outputs \(\bar{y} := [y_1^T, \ldots, y_P^T]^T \) and inputs \(\bar{x} := [x_1^T, \ldots, x_P^T]^T \)

- Unknown rank-one matrices \(Z_p := x_p h^T \). Stack them
 - Vertically in rank one \(\bar{Z}_v := [Z_1^T, \ldots, Z_P^T]^T = \bar{x} h^T \in \mathbb{R}^{NP \times L} \)
 - Horizontally in row sparse \(\bar{Z}_h := [Z_1, \ldots, Z_P] \in \mathbb{R}^{N \times PL} \)

- **Convex formulation**

\[
\min_{\{Z_p\}_{p=1}} \| \bar{Z}_v \|_* + \tau \| \bar{Z}_h \|_{2,1}, \quad \text{s. to} \quad \bar{y} = \left(I_P \otimes \left(V (\Psi^T \odot U^T)^T \right) \right) \text{vec}(\bar{Z}_h)
\]

\[\Rightarrow \text{Relax (As.):} \quad \| \bar{Z}_h \|_{2,1} \leftrightarrow \| \bar{Z}_v \|_{2,1} = \sum_{p=1}^P \| Z_p \|_{2,1} \]
Numerical tests: Multiple signals, recovery rates

- Recovery rates over an \((L, S)\) grid and 20 trials
 - Successful recovery when \(\|\hat{\mathbf{x}}h^T - \bar{\mathbf{x}}h^T\|_F < 10^{-3}\)

- ER (left), ER reweighted \(\ell_{2,1}\) (center), brain reweighted \(\ell_{2,1}\) (right)

- Leveraging multiple output signals aids the blind identification task
Summary and extensions

- Extended blind deconvolution of space/time signals to graphs
 - Key: model diffusion process as output of graph filter
- Rank and sparsity minimization subject to model constraints
 - “Lifting” and convex relaxation yield efficient algorithms
- Exact recovery conditions ⇒ Success of the convex relaxation
 ⇒ Probabilistic guarantees that depend on the graph spectrum
- Consideration of multiple sparse inputs aids recovery
- Envisioned application domains
 (a) Opinion formation in social networks
 (b) Identify sources of epileptic seizure
 (c) Trace “patient zero” for an epidemic outbreak
- Unknown shift S ⇒ Network topology inference
GlobalSIP’16 Symposium on Networks

Symposium on Signal and Information Processing over Networks

Topics of interest

- Graph-signal transforms and filters
- Non-linear graph SP
- Statistical graph SP
- Prediction and learning in graphs
- Network topology inference
- Network tomography
- Control of network processes
- Signals in high-order graphs
- Graph algorithms for network analytics
- Graph-based distributed SP algorithms
- Graph-based image and video processing
- Communications, sensor and power networks
- Neuroscience and other medical fields
- Web, economic and social networks

Paper submission due: June 5, 2016

Organizers:
- Michael Rabbat (McGill Univ.)
- Antonio Marques (King Juan Carlos Univ.)
- Gonzalo Mateos (Univ. of Rochester)
Relevance of the graph-shift operator

Q: Why is S called shift?
Q: Why is S called shift? A: Resemblance to time shifts

Set $S = A_{de}$

What is Sx?

$$
\begin{pmatrix}
0 \\
0 \\
x_2 \\
x_3 \\
0 \\
0
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
x_2 & 0 & 1 & 0 & 0 & 0 \\
x_3 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_6 \\
x_5 \\
x_4 \\
x_1 \\
x_2
\end{pmatrix}
$$
Relevance of the graph-shift operator

Q: Why is S called shift?
A: Resemblance to time shifts

Set $S = A_{dc}$

What is Sx?

S will be building block for GSP algorithms

⇒ Same is true in the time domain (filters and delay)