Space-Shift Sampling of Graph Signals

Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro

Dept. of Electrical and Systems Engineering
University of Pennsylvania
ssegarra@seas.upenn.edu
http://www.seas.upenn.edu/~ssegarra/

ICASSP, March 23, 2016
Network science analytics

Desiderata: Process, analyze and learn from network data [Kolaczyk’09]
Network science analytics

Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

Network as graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships

Interest here not in G itself, but in data associated with nodes in \mathcal{V}

⇒ The object of study is a graph signal

Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Online social media | Internet | Clean energy and grid analytics
Motivating examples – Graph signals

Graph SP: broaden classical SP to graph signals [Shuman etal’13]
⇒ Our view: GSP well suited to study network processes

As.: Signal properties related to topology of G (e.g., smoothness)
⇒ Algorithms that fruitfully leverage this relational structure
Graph signals

Consider a graph \(G(\mathcal{V}, \mathcal{E}) \). Graph signals are mappings \(x : \mathcal{V} \rightarrow \mathbb{R} \)

\[\Rightarrow \text{Defined on the vertices of the graph (data tied to nodes)} \]

May be represented as a vector \(x \in \mathbb{R}^N \)

\[\Rightarrow x_n \text{ denotes the signal value at the } n\text{-th vertex in } \mathcal{V} \]

\[\Rightarrow \text{Implicit ordering of vertices} \]

\[x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_9 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.7 \\ 0.3 \\ \vdots \\ 0.7 \end{bmatrix} \]
To understand and analyze \mathbf{x}, useful to account for G's structure

- Graph G is endowed with a graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$
 \[S_{ij} = 0 \text{ for } i \neq j \text{ and } (i,j) \notin \mathcal{E} \] (captures local structure in G)

- \mathbf{S} can take nonzero values in the edges of G or in its diagonal

- **Ex:** Adjacency \mathbf{A}, degree \mathbf{D}, and Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{A}$ matrices
Relevance of the graph-shift operator

» Q: Why is S called shift?
Relevance of the graph-shift operator

Q: Why is S called shift? A: Resemblance to time shifts

Set $S = A_{dc}$

What is Sx?

$$
\begin{pmatrix}
0 \\
0 \\
x_2 \\
x_3 \\
0 \\
0
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
x_2 \\
x_3 \\
0 \\
0 \\
0
\end{pmatrix}
$$
Relevance of the graph-shift operator

Q: Why is S called shift? A: Resemblance to time shifts

Set $S = A_{dc}$

What is Sx?

S will be building block for GSP algorithms

⇒ Same is true in the time domain (filters and delay)
Locality of the graph-shift operator

- **S** is a linear operator that can be computed locally at the nodes in \(\mathcal{V} \)

- Consider the graph signal \(\mathbf{y} = \mathbf{Sx} \) and node \(i \)'s neighborhood \(\mathcal{N}_i \)
 \[\Rightarrow \text{Node } i \text{ can compute } y_i \text{ if it has access to } x_j \text{ at } j \in \mathcal{N}_i \]
 \[y_i = \sum_{j \in \mathcal{N}_i} S_{ij} x_j, \quad i \in \mathcal{V} \]

- Recall \(S_{ij} \neq 0 \) only if \(i = j \) or \((j, i) \in \mathcal{E} \)

- If \(\mathbf{y} = \mathbf{S}^2 \mathbf{x} \Rightarrow y_i \text{ found using values } x_j \text{ within 2 hops} \)
Graph Fourier transform (GFT)

- As.: S related to generation (description) of the signals of interest
 \Rightarrow Spectrum of $S = \mathbf{V}\Lambda\mathbf{V}^{-1}$ will be especially useful to analyze \mathbf{x}

- The Graph Fourier Transform (GFT) of \mathbf{x} is defined as
 $$\tilde{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x}$$

- While the inverse GFT (iGFT) of $\tilde{\mathbf{x}}$ is defined as
 $$\mathbf{x} = \mathbf{V}\tilde{\mathbf{x}}$$
 \Rightarrow Eigenvectors $V = [v_1, ..., v_N]$ are the frequency basis (atoms)

- Ex: For the directed cycle (temporal signal) \Rightarrow GFT \equiv DFT
 \Rightarrow DFT matrix diagonalizes circulant matrices like $S = A_{dc}$
Sampling of graph signals

- **Sampling** is a cornerstone inverse problem in classical SP
 - How to find $x \in \mathbb{R}^N$ using $P < N$ observations?

- Our focus on bandlimited signals, but other models possible
 - $\tilde{x} = V^{-1}x$ sparse
 - $x = \sum_{k \in K} \tilde{x}_k v_k$, with $|K| = K < N$
 - S involved in generation of x
 - Agnostic to the particular form of S

- Two sampling schemes were introduced in the literature
 - Selection [Anis14, Chen15, Tsitsvero15, Puy15, Wang15]
 - Aggregation [Marques15, Segarra15]

- We combine both to create a hybrid scheme
 - Space-shift sampling
Sampling of graph signals

- **Sampling** is a cornerstone inverse problem in classical SP
 - How to find $x \in \mathbb{R}^N$ using $P < N$ observations?

- Our focus on **bandlimited** signals, but other models possible

 $\tilde{x} = V^{-1}x$ sparse

 $x = \sum_{k \in \mathcal{K}} \tilde{x}_k v_k$, with $|\mathcal{K}| = K < N$

 S involved in generation of x

 Agnostic to the particular form of S

- Two sampling schemes were introduced in the literature
 - **Selection** [Anis14, Chen15, Tsitsvero15, Puy15, Wang15]
 - **Aggregation** [Marques15, Segarra15]

- We combine both to create a **hybrid** scheme ⇒ **Space-shift** sampling
There are two ways of interpreting sampling of time signals:

1. We can either freeze the signal and sample values at different times.
2. We can fix a point (present) and sample the evolution of the signal.

Both strategies coincide for time signals but not for general graphs.

⇒ Give rise to selection and aggregation sampling.
Selection sampling

- **Intuitive extension** of sampling to graph signals
 - Select a subset of the nodes and observe the signal value
 - Let $C \in \{0, 1\}^{P \times N}$ be a selection matrix (P rows of I_N)
 $$\tilde{x} = Cx$$

- Goal: recover x based on \tilde{x}
 - Assume that the support of \mathcal{K} is known (w.l.o.g. $\mathcal{K} = \{k\}_{k=1}^K$)
 - Since $\tilde{x}_k = 0$ for $k > K$, define \tilde{x}_K as (with $E_K := [e_1, \ldots, e_K]$)
 $$\tilde{x}_K := [\tilde{x}_1, \ldots, \tilde{x}_K]^T = E_K^T \tilde{x}$$

- Use \tilde{x} to find \tilde{x}_K, and then recover x as
 $$x = V_K \tilde{x}_K = V_K (CV_K)^{-1} \tilde{x}$$
Aggregation sampling

- Idea: incorporating S to the **sampling** procedure
- Consider shifted (aggregated) signals $y^{(l)} = S^l x$
 - $y^{(l)} = Sy^{(l-1)}$ ⇒ they can be found sequentially
 - $S_{ij} = 0$ if $i \notin N_j$ ⇒ Only local exchanges are required
- Form signal $y_i = [y_i^{(0)}, y_i^{(1)}, ..., y_i^{(N-1)}]^T$

![Graph examples](image-url)
Aggregation sampling

- Idea: incorporating S to the sampling procedure

- Consider shifted (aggregated) signals $y^{(l)} = S'x$
 \[y^{(l)} = Sy^{(l-1)} \Rightarrow \text{they can be found sequentially} \]
 \[S_{ij} = 0 \text{ if } i \not\in \mathcal{N}_j \Rightarrow \text{Only local exchanges are required} \]

- Form signal $y_i = [y_i^{(0)}, y_i^{(1)}, \ldots, y_i^{(N-1)}]^T$

- Sampled signal $\bar{y}_i = Cy_i \Rightarrow \bar{y}_i$ can be obtained locally by node i

- Goal: recover x based on $\bar{y}_i \Rightarrow$ Find \tilde{x}_K and recover x as $x = V_K\tilde{x}_K$

- Define $\bar{u}_i := V^T_K e_i$ and the Vandermonde matrix Ψ s.t. $\psi_{kl} = \lambda_k^{l-1}$

\[
x = V_K\tilde{x}_K = V_K\text{diag}^{-1}(\bar{u}_i)(C\Psi^T E_K)^{-1}\bar{y}_i
\]
Space-shift sampling

- **Hybrid** scheme combining selection and aggregation sampling
 - **Selection** ⇒ sampling the dimension of nodes
 - **Aggregation** ⇒ sampling the dimension of shift applications
 - **Space-shift** ⇒ sampling the 2D space spanned by the above

Selection: 4 nodes, 1 sample
Space-shift: 2 nodes, 2 samples
Aggregat.: 1 node, 4 samples

Define the matrix $Y := [y^{(0)}, \ldots, y^{(N-1)}] = [x, Sx, \ldots, S^{N-1}x]$
 - **Selection** samples the first column of Y
 - **Aggregation** samples the i-th row of Y
 - **Space-shift** samples the whole matrix Y
Define the matrix \(\bar{\Upsilon} := [\text{diag}(\bar{u}_1), \ldots, \text{diag}(\bar{u}_N)]^T \) and \(\gamma := \text{vec}(Y^T) \).

Let \(C \in \{0, 1\}^{K \times N^2} \) be a selection matrix \(\Rightarrow \bar{\gamma} = C\gamma \).

Recovery of space-shift sampling

Signal \(x \) can be recovered from \(K \) space-shift samples as

\[
x = V_K \tilde{x}_K = V_K (C(I \otimes (\Psi E_K)) \bar{\Upsilon})^{-1} \bar{\gamma}
\]

provided that the inverse exists.

If \(C(I \otimes (\Psi E_K)) \bar{\Upsilon} \) is not invertible \(\Rightarrow \) additional samples required.

In general, invertibility is not easy to check a priori \(\Rightarrow \) Selection.

For some forms of \(C \), invertibility can be ensured \(\Rightarrow \) Aggregation.
Space-shift sampling: Discussion

Appealing features of Space-shift Sampling

- Natural scheme when S encodes an underlying network dynamics
- Appropriate for inference based on a few access nodes
- Includes cases where node observes neighboring signal values
- Consistent with sampling in DSP
- Recovery error is reduced by combining selection and aggregation

Extensions

- Sampling in the presence of noise
 - Design of optimal sampling schemes
 - Aggregating nodes and C play a key role in minimizing error
- Unknown frequency support ⇒ Sparse recovery
We have assumed the first K frequencies of x to be active.

A more challenging problem \Rightarrow Frequency support \mathcal{K} is unknown.

Defining $\Upsilon := [\text{diag}(u_1), \ldots, \text{diag}(u_N)]^T$, reformulate the problem

$$\tilde{x}^* = \arg \min_{\tilde{x}} \| \tilde{x} \|_0 \quad \text{s.t.} \quad \tilde{\gamma} = C(I \otimes \Psi) \Upsilon \tilde{x}$$

Identifiable when $C(I \otimes \Psi) \Upsilon$ is full spark and has at least $2K$ rows.

For some C, full-spark can be assessed by inspecting $\{\lambda_i\}_{i=1}^N$ and V.

Computationally, the ℓ_0 norm renders the optimization non-convex \Rightarrow Convexify it by replacing the ℓ_0 with an ℓ_1 norm.

Recoverability based on the coherence and the RIP of $C(I \otimes \Psi) \Upsilon$.

With noise, the constraint can be replaced by $\| \tilde{\gamma} - C(I \otimes \Psi) \Upsilon \tilde{x} \|_2^2 < \epsilon$.
Comparing sampling schemes

- **62 economic sectors** in USA + 2 synthetic sectors
 - Graph: average flows of production in 2007-2010, \(S = A \)
 - Signal \(x \): Production of sectors in 2011 (approx. bandlimited)

- Comparable **minimum errors**
- **Median** errors reduced via space-shift sampling

<table>
<thead>
<tr>
<th>Sampling strategy</th>
<th>Error</th>
<th>Min.</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>([x]_i)</td>
<td>([x]_j)</td>
<td>([x]_k)</td>
<td>([x]_l)</td>
</tr>
<tr>
<td>([x]_i)</td>
<td>([Sx]_i)</td>
<td>([S^2x]_i)</td>
<td>([S^3x]_i)</td>
</tr>
<tr>
<td>([Sx]_i)</td>
<td>([Sx]_j)</td>
<td>([Sx]_k)</td>
<td>([Sx]_l)</td>
</tr>
<tr>
<td>([S^2x]_i)</td>
<td>([S^2x]_j)</td>
<td>([S^2x]_k)</td>
<td>([S^2x]_l)</td>
</tr>
<tr>
<td>([x]_i)</td>
<td>([Sx]_i)</td>
<td>([x]_j)</td>
<td>([Sx]_j)</td>
</tr>
</tbody>
</table>
Signals of bandwidth $K \in \{1, 2, \ldots, 5\}$ on the economic network

\Rightarrow Value of K known but not the specific support

Nr. of observations M, i.e. rows of C, where $M \in \{5, 10, \ldots, 40\}$

\Rightarrow Chosen among values in original signal x and first shift Sx

Solve iterative randomized version of convex relaxation

For large M and small K

\Rightarrow perfect recovery

Gradual detriment for more adverse configurations
Conclusion

- Presented basic building blocks of GSP
 \[S = V \Lambda V^{-1}, \text{ GFT } V^{-1} \]

- Discussed differences between selection and aggregation sampling
- Selection and aggregation can be combined in space-shift sampling
 \[\Rightarrow \text{ All of them reduce to traditional sampling in DSP} \]

- Natural scheme for network processes
 \[\Rightarrow \text{ Appropriate for inference with few access nodes} \]

- Conditions for perfect recovery and joint support identification

- Illustrated concepts via the U.S. economic network