Microgrid Dispatch and Price of Reliability Using Stochastic Approximation

Luis M. López-Ramos(1), Vassilis Kekatos(2), Antonio G. Marques(2), and Georgios B. Giannakis(3)

(1) King Juan Carlos University (Madrid, Spain)
(2) Virginia Tech. (Blacksburg, VA)
(3) University of Minnesota (Minneapolis, MN)

Ack: A. J. Conejo, GlobalSIP Travel Grant, FPU #AP2010-1050, MEC #TEC2013-41604-R.
Motivation

- Grid efficiency vs. supply reliability
- **Multi-stage** economic dispatch
 - Day-ahead dispatch/scheduling
 - Recourse actions: adjustments, re-dispatching
 - Emergency actions: load shedding
- **Uncertainty** in: demand, renewable generation, market prices
- Worst-case (robust) vs. Stochastic approaches
 - Worst-case: simpler, but more conservative
 - Stochastic: non-negligible savings, maintaining reliability
- Minimize *expected* network operation cost
- Provide **reliability guarantees**
Work in context

• Bouffard and Galiana, 2008: minimization of expected costs of:
 • Preventive and Post-disturbance actions
 • Limits to loss-of-load probability (LOLP)

• Risk-limiting dispatch
 • Varaiya et al, 2011
 • Rajagopal et al, 2013: dynamic programming approach (curse of dimensionality)
 • Zhang et al, 2014: network constraints, price of uncertainty

• Our contribution:
 • Minimization of expected network cost (including penalties)
 • Limits to the expected load not served (ELNS)
 • Stochastic approximation approach
Operational Scenario

- Microgrid with:
 - Distributed Renewable energy sources
 - Interconnection with an external system where power can be sold/bought

- Day-ahead dispatch:
 - Conventional dispatch
 - Market transaction

- Real-time adjustments:
 - Load shedding
 - Renewable energy spilling
 - Real-time market transaction

- Loads demanding reliable service
- Conventional dispatchable generation
Grid modeling

- Linearized “DC” power flow approximation

\[\mathbf{p} = \mathbf{g} + \mathbf{w} - \mathbf{d} \]

- Bus power injections
- Renewable generation
- Conventional generation
- Load demand

| \(\mathbf{1}^{\top} \mathbf{p} = 0 \) | Nodal injection balance

| \(|\mathbf{H}^{\top} \mathbf{p}| \leq f^{\text{max}} \) | Thermal power flow limits

- Network power transfer
- Distribution factors
Problem statement

Day-ahead dispatch

- **Given** statistical information on future network variables:
 - Load demand
 - Market prices
 - Renewable generation

- **Design:**
 - Conventional generator dispatch
 - Energy transaction with external system

Real-time dispatch

- Once day-ahead dispatch is implemented, and **given**:
 - Actual load demand
 - Real-time market prices
 - Available renewable energy

- **Design:**
 - Real-time adjustments
 - Load shedding
 - Renewable energy splilling

- **Common objective:** minimize expected operation cost
- Maintain ELNS (expected load not served) under a prespecified limit
Problem formulation

\[\min_{p_0, g, \{\delta(\xi), p(\xi)\}} \mathbb{E}_\xi \left[R(\delta_g) + T(\delta_0) + P(\delta_d) + v_w^T \delta_w \right] \]

Real-time transaction cost \quad Load-shedding penalty \quad Spilling penalty

Conventional redispatch cost

Generation dispatch cost \quad \rightarrow \quad + C(g) + \beta p_0 \quad \leftarrow \quad Day-ahead transaction cost

s.t. \quad p = g + \delta_g + w - \delta_w - d + \delta_d

\[1^T p + p_0 + \delta_0 = 0 \]

\[|H p| \leq f_{\max} \]

\[0 \leq \delta_w \leq w \]

\[0 \leq \delta_d \leq d \]

\[0 \leq \delta_g \leq \delta_{g_{\max}} \]

\[0 \leq g \leq g_{\max} \]

\[\mathbb{E}_\xi [1^T \delta_d] \leq \eta \]

Instantaneous constraints

Upper bound on ELNS

This problem will be solved in two phases (no loss of optimality)
Second-stage optimization

- Suppose first-stage variables are fixed and given:

\[f(p_0, g) := \min_{\{\delta, p\}} \mathbb{E}_{\xi}[R(\delta_g) + T(\delta_0) + P(\delta_d) + \mathbf{v}_w^T\delta_w] \]

Optimal value of real-time dispatch

\[\mathbb{E}_{\xi}[\mathbf{1}^T\delta_d] \leq \eta \quad \text{s.to (inst. constraints) } \forall \xi; \]

- Solve using dual approach:

\[\mathcal{D}(\nu; p_0, g) := \min_{\{\delta, p\}} \mathbb{E}_{\xi}[R(\delta_g) + T(\delta_0) + P(\delta_d) + \mathbf{v}_w^T\delta_w + \nu(\mathbf{1}^T\delta_d - \eta)] \]

s.to (inst. constraints) \forall \xi

- If \(\nu^* \) is known, the problem decomposes across realizations of \(\xi \)

- Stochastic dual subgradient asymptotically converges to \(\nu^* \)

\[\nu^{k+1} := \left[\nu^k + \mu_k (\mathbf{1}^T\delta_d^*(\xi_k; \nu^k, p_0, g) - \eta) \right]_+ \]
First-stage optimization

- Use info from second-stage solution to solve for \((p_0^*, g^*)\)

- Strong duality: \(f(p_0, g) = \max_{\nu} \mathcal{D}(\nu; p_0, g)\)

\[
\min_{p_0, g \in \mathcal{G}} C(g) + \beta p_0 + f(p_0, g) = \min_{p_0, g \in \mathcal{G}} \max_{\nu \geq 0} C(g) + \beta p_0 + \mathcal{D}(\nu; p_0, g)
\]

- Stochastic saddle point problem

- [Nemirovski et al, 2012]: Robust stochastic approximation approach to stochastic programming

- Solution via stochastic saddle-point mirror algorithm
Primal-dual subgradient iterations

• Dual update:

\[\nu^{k+1} := [\nu^k + \mu_k (1^\top \delta d^*(\xi_k; \nu^k, p_0^k, g^k) - \eta)]_+ \]

• Primal update:

\[p_0^{k+1} := p_0^k - \varepsilon_k (\beta - \lambda^* (\xi_k; \nu^k, p_0^k, g^k)) \]

\[g^{k+1} := [g^k - \varepsilon_k (\partial_{\!\!g} C(g^k) + \theta^* (\xi_k; \nu^k, p_0^k, g^k))]_G \]

• Features:
 • Derivative-free (numerical computation of LMs)
 • Distribution-free
 • Asymptotic convergence

LMP at interconnection node
LMPs at nodes with conv. gen.
Economic Interpretation

- Optimality condition: \(\mathbb{E}[\lambda^*(\xi_k; \nu^*, p_0^*, g^*)] = \beta \)

- Average price equilibrium

- Multiplier \(\nu^* \) is the *price of reliability*
 - Sensitivity of optimal cost w.r.t. \(\eta \)

Upper bound on ELNS

LMP at interconnection node

Day-ahead energy price

Upper bound on ELNS
Numerical tests

- Proposed scheme:
 - Fulfills constraints
 - Outperforms alternatives

- Worst-case:
 - Over-conservative

- Static spinning reserve (SR) allocation:
 - Does not control ELNS constraint
Conclusions

• Day-ahead (DA) and Real-time (RT) dispatch

• Two-stage stochastic program
 • Constraints on expectation of second-stage design variables

• Stochastic approximation approach
 • Sample-based: efficient, distribution-free
 • Asymptotically optimal

• Future work:
 • Probability constraints (non-convex)
 • Smaller time scales: voltage control

Thank you!